Tailoring low-dimensional structures of bismuth on monolayer epitaxial graphene

نویسندگان

  • H.-H. Chen
  • S. H. Su
  • S.-L. Chang
  • B.-Y. Cheng
  • S. W. Chen
  • H.-Y. Chen
  • M.-F. Lin
  • J. C. A. Huang
چکیده

To improve graphene-based multifunctional devices at nanoscale, a stepwise and controllable fabrication procedure must be elucidated. Here, a series of structural transition of bismuth (Bi) adatoms, adsorbed on monolayer epitaxial graphene (MEG), is explored at room temperature. Bi adatoms undergo a structural transition from one-dimensional (1D) linear structures to two-dimensional (2D) triangular islands and such 2D growth mode is affected by the corrugated substrate. Upon Bi deposition, a little charge transfer occurs and a characteristic peak can be observed in the tunneling spectrum, reflecting the distinctive electronic structure of the Bi adatoms. When annealed to ~500 K, 2D triangular Bi islands aggregate into Bi nanoclusters (NCs) of uniform size. A well-controlled fabrication method is thus demonstrated. The approaches adopted herein provide perspectives for fabricating and characterizing periodic networks on MEG and related systems, which are useful in realizing graphene-based electronic, energy, sensor and spintronic devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absorption Spectra of a Graphene Embedded One Dimensional Fibonacci Aperiodic Structure

In this paper, we explore the linear response of one dimensionalquasiperiodic structure based on Fibonacci sequence composed of silicon dioxide,polystyrene and graphene materials. Here, a graphene monolayer is sandwichedbetween two adjacent layers. The numerical results are obtained by using the standardtransfer matrix method. Due to the presence of graphene sheet in eac...

متن کامل

Atomic Scale Study on Growth and Heteroepitaxy of ZnO Monolayer on Graphene

Atomically thin semiconducting oxide on graphene carries a unique combination of wide band gap, high charge carrier mobility, and optical transparency, which can be widely applied for optoelectronics. However, study on the epitaxial formation and properties of oxide monolayer on graphene remains unexplored due to hydrophobic graphene surface and limits of conventional bulk deposition technique....

متن کامل

Electronic structure of few-layer epitaxial graphene on Ru(0001).

The electronic structure of epitaxial monolayer, bilayer, and trilayer graphene on Ru(0001) was determined by selected-area angle-resolved photoelectron spectroscopy (micro-ARPES). Micro-ARPES band maps provide evidence for a strong electronic coupling between monolayer graphene and the adjacent metal, which causes the complete disruption of the graphene pi-bands near the Fermi energy. However,...

متن کامل

Structural and electronic properties of epitaxial graphene on SiC(0001): A review of growth, characterization, transfer doping and hydrogen intercalation

Graphene, a monoatomic layer of graphite hosts a two-dimensional electron gas system with large electron mobilities which makes it a prospective candidate for future carbon nanodevices. Grown epitaxially on silicon carbide (SiC) wafers, large area graphene samples appear feasible and integration in existing device technology can be envisioned. This article reviews the controlled growth of epita...

متن کامل

Title of Document : KELVIN PROBE MICROSCOPY STUDIES OF EPITAXIAL GRAPHENE ON

Title of Document: KELVIN PROBE MICROSCOPY STUDIES OF EPITAXIAL GRAPHENE ON SiC(0001). Alexandra Elizabeth Curtin, PhD., 2011 Directed By: Professor Michael S. Fuhrer, Department of Physics, Center for Nanophysics and Advanced Materials (Director) and the Materials Research Science and Engineering Center. Epitaxial graphene on SiC(0001) presents a promising platform for device applications and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2015